


1. ¿Cómo medir transmitancia térmica con su testo 435?

Tabla E.1 Resistencias térmicas superficiales de cerramientos en contacto con el aire exterior en m²K/W

| Posición del cerramiento y sentido del flujo de calor                                       |   | Rse  | Rsi  |
|---------------------------------------------------------------------------------------------|---|------|------|
| Cerramientos verticales o con pen-<br>diente sobre la horizontal >60° y flujo<br>horizontal | • | 0,04 | 0,13 |
| Cerramientos horizontales o con<br>pendiente sobre la horizontal ≤60° y<br>flujo ascendente |   | 0,04 | 0,10 |
| Cerramientos horizontales y flujo descendente                                               |   | 0,04 | 0,17 |

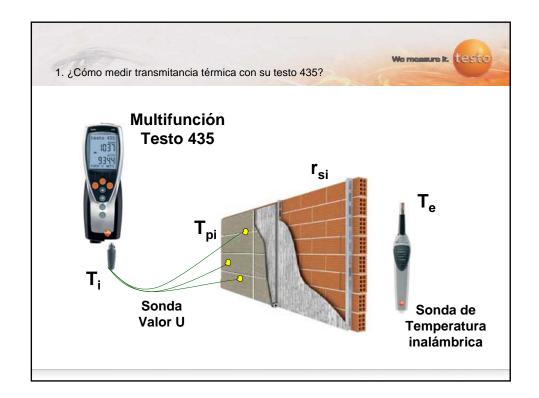
las resistencias térmicas superficiales correspondientes al aire interior y exterior respectivamente, tomadas de la tabla E.1 de acuerdo a la posición del cerramiento,  $R_{\text{si}} \, y \, R_{\text{se}}$ dirección del flujo de calor y su situación en el edificio [m² K/W].

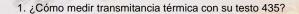




# Cálculo del coeficiente global de transmisión "U"

Flujo de calor ambiente - pared


$$Q/A = (Ti - Tsi) hci$$


Flujo a través de una pared

$$Q/A = U (Ti - Te)$$

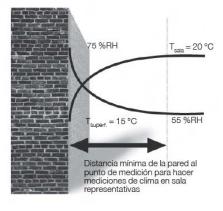
$$U (Ti - Te) = (Ti - Tsi) hci$$

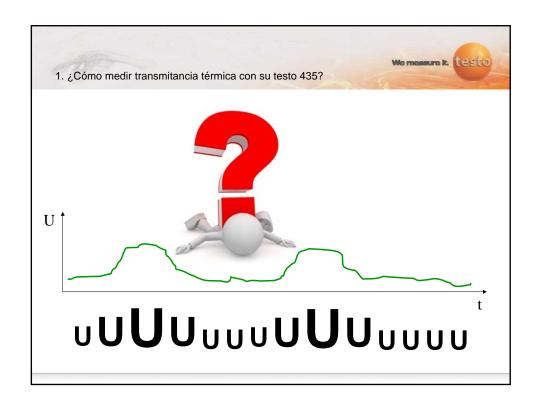
$$U = \frac{(Ti - Tsi) hci}{(Ti - Tsi)} [W/ m2K]$$

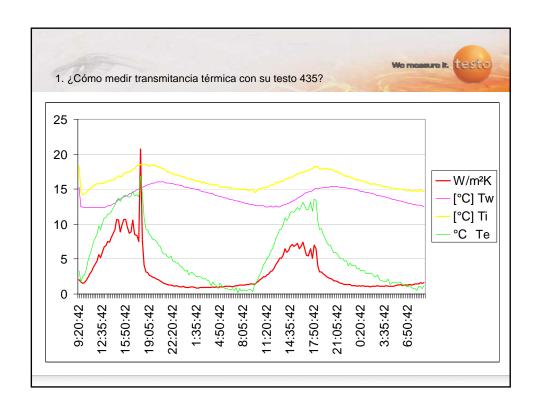


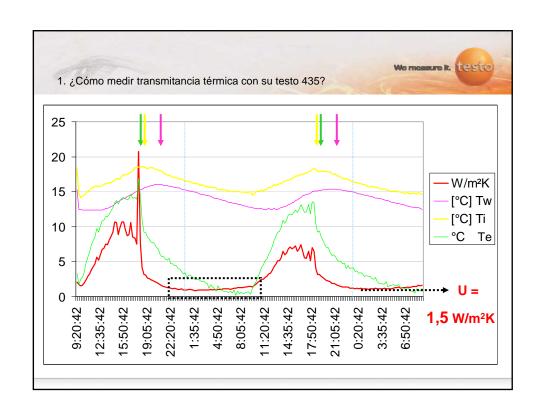




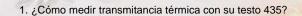

# Condiciones para una óptima medición


- debe existir una clara diferencia de temperatura entre el interior y el exterior.
- condiciones de temperatura estables (estado estacionario)
- > para el instrumento:
  - → proteger del frío y de cualquier radidación directa de calor
  - $\rightarrow$  colocar a 30cm de distancia del muro/pared a la misma altura que la sonda de valor U
- No tocar el conector de la sonda valor U durante la medición


1. ¿Cómo medir transmitancia térmica con su testo 435?


We measure it testo

# Condiciones para una óptima medición













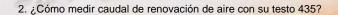



## CTE:H1. Zonas Climáticas

Tabla D.1. - Zonas climáticas

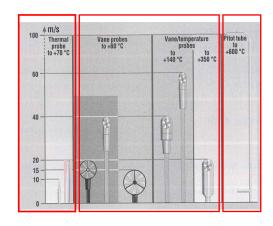
| Capital de provincia | Capital |  |
|----------------------|---------|--|
| Albacete             | D3      |  |
| Alicante             | B4      |  |
| Almería              | A4      |  |
| Ávila                | E1      |  |
| Badajoz              | C4      |  |
| Barcelona            | C2      |  |
| Bilbao               | C1      |  |
| Burgos               | E1      |  |
| Cáceres              | C4      |  |
|                      |         |  |

1. ¿Cómo medir transmitancia térmica con su testo 435?


# We measure it. testo

# CTE:H1. U máxima por Zona Climática

Tabla 2.1 Transmitancia térmica máxima de *cerramientos* y *particiones interiores* de la envolvente térmica U en W/m²K \_\_\_\_\_


| Cerramientos y particiones interiores                                                                                                                                                                                      | ZONAS<br>A | ZONAS<br>B | ZONAS<br>C | ZONAS<br>D | ZONAS<br>E |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|
| Muros de fachada, particiones interiores en contacto con<br>espacios no habitables, primer metro del perímetro de<br>suelos apoyados sobre el terreno <sup>(1)</sup> y primer metro de<br>muros en contacto con el terreno | 1 22       | 1,07       | 0,95       | 0,86       | 0,74       |
| Suelos <sup>(2)</sup>                                                                                                                                                                                                      | 0,69       | 0,68       | 0,65       | 0,64       | 0,62       |
| Cubiertas <sup>(3)</sup>                                                                                                                                                                                                   | 0,65       | 0,59       | 0,53       | 0,49       | 0,46       |
| Vidrios y marcos                                                                                                                                                                                                           | 5,70       | 5,70       | 4,40       | 3,50       | 3,10       |
| Medianerías                                                                                                                                                                                                                | 1,22       | 1,07       | 1,00       | 1,00       | 1,00       |

 $U_{max} = 0.95 \text{ W/m}^2\text{K} < U_{med} = 1.50 \text{ W/m}^2\text{K}$ 





#### Medida de velocidad y caudal en sistemas de Extracción/Impulsión





2. ¿Cómo medir caudal de renovación de aire con su testo 435?

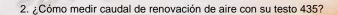


### PARTE II.- INSTRUCCIONES TÉCNICAS – I.T 1 DISEÑO Y DIMENSIONADO

## Medida de velocidad y caudal en sistemas de Extracción/Impulsión

| Característica | Hilo                                                                      | Bola                      |
|----------------|---------------------------------------------------------------------------|---------------------------|
| Velocidad      | unidireccional                                                            | Omnidireccional           |
| Rango          | 020 m/s                                                                   | 010 m/s                   |
| Exactitud      | ± (0,03 ± 4%v.m.)                                                         | $\pm (0.03 \pm 5\% v.m.)$ |
| Resolución     | 0,01                                                                      | 0,01                      |
| Utilidad       | Aguantan hasta 70°C y no se mide en ambientes con partículas o explosivas |                           |
| Influencia     | De la presión atmosférica: Vreal=Vmed. x (1013 / Patm.)                   |                           |






OJO !! La Temperatura medida no es la temperatura ambiente, sino que es la temperatura del aire que circula alrededor del sensor en ese momento

### **APLICACIÓN**

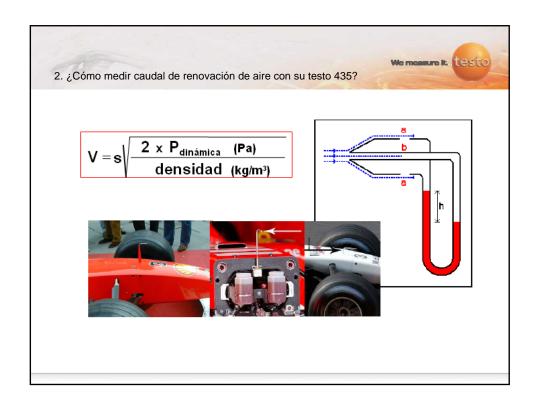
- Sistemas de flujo laminar
- Cabinas de flujo laminar: EN 14175 (hilo caliente)
- Interior de conductos

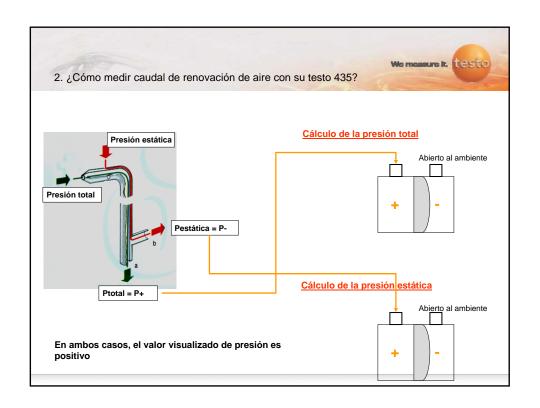
- Salida de rejillas
- Salida de difusores (bola caliente)
- Aspiración de aire con conos

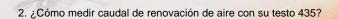




## Medida de velocidad y caudal en sistemas de Extracción/Impulsión

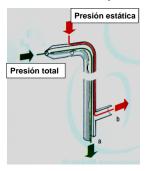

| Característica | molinetes                              |  |
|----------------|----------------------------------------|--|
| Velocidad      | Unidireccional                         |  |
| Rango          | 0,2560 m/s                             |  |
| Exactitud      | ± (0,2 ± 1% v.m.)                      |  |
| Resolución     | 0,1                                    |  |
| Utilidad       | Aguanta temperaturas hasta 350°C       |  |
| Influencia     | De temperatura cuando ésta es > 300 °C |  |





### **APLICACIÓN**

- Interior de conductos
- Salida de rejilla (impulsión)
- Aspiración de aire (con cono)











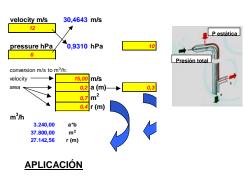

#### Medida de velocidad y caudal en sistemas de Extracción/Impulsión



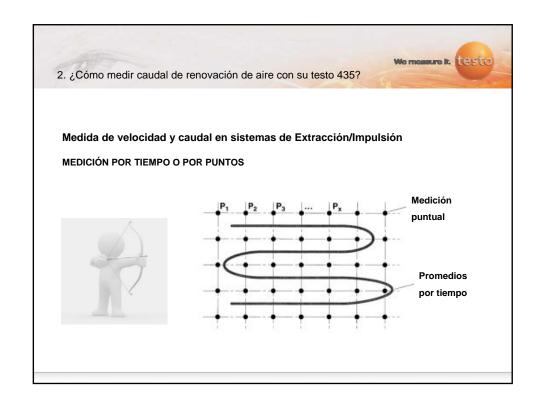
- Precisión:
  - > depende de la precisión en la medida de presión
  - > aumenta cuando aumenta la velocidad
- Compensación de la densidad (Kg/m³)
- > Posicionar correctamente el pitot encarado al flujo de aire
- ➤ Tubo de pitot curvo (factor de pitot (s)=1)

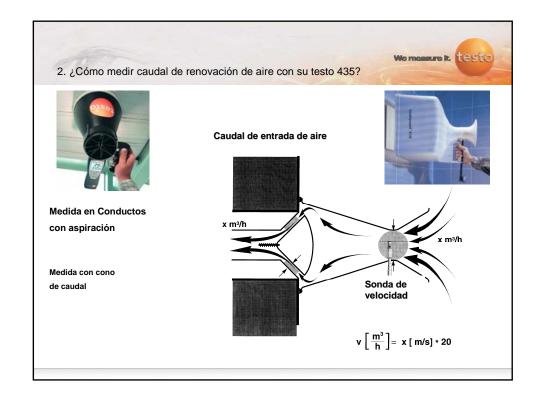
  Tubo de pitot recto (factor de pitot (s)=0.67)
- Cálculo:

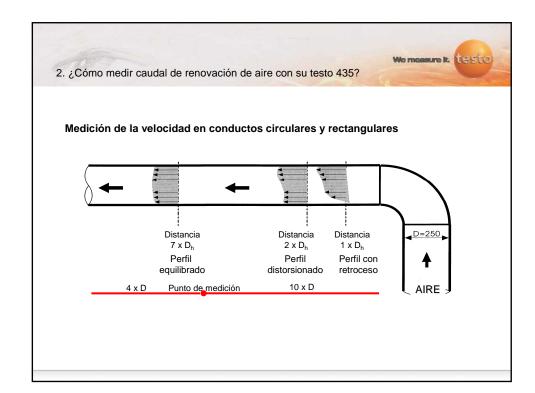
Pdinámica (Pa) = Ptotal – Pestática


$$V = s \sqrt{\frac{2 \times P_{\text{dinámica}} \text{ (Pa)}}{\text{densidad (kg/m}^3)}}$$

2. ¿Cómo medir caudal de renovación de aire con su testo 435?





#### ¿ Cómo escoger el sensor de presión más adecuado ?


| Característic<br>a | Velocidad                                            |  |
|--------------------|------------------------------------------------------|--|
| Velocidad          | unidireccional                                       |  |
| 0 a 100 Pa         | 012 m/s                                              |  |
| 0 a 10 hPa         | 039 m/s                                              |  |
| 0 a 100 hPa        | 0120 m/s                                             |  |
| 0 a 2 hPa          | 017,5 m/s                                            |  |
| 0 a 20 hPa         | 055 m/s                                              |  |
| 0 a 200 hPa        | 0100 m/s                                             |  |
|                    | Pitot curvo (S=1) o                                  |  |
| Utilidad           | recto (S=0,67)                                       |  |
|                    | Resisten temperaturas de 1000 °C                     |  |
| Influencia         | De la densidad del aire = f (P, T <sup>a</sup> ,%Hr) |  |
|                    | Vreal=S x raíz (2 x AP / densidad)                   |  |



Medición a velocidades muy elevadas Medición a Temperaturas superiores a 140°C Chimeneas y salida de ventiladores







2. ¿Cómo medir caudal de renovación de aire con su testo 435?

We measure it. testo

## Medición de la velocidad en conductos circulares y rectangulares

Para los **conductos circulares** se aconseja un número de **medidas entre 6 y 20** en dos diámetros perpendiculares dependiendo del tamaño del conducto y de la exactitud requerida (para conductos de diámetro **inferior a 15 cm** son suficientes **6 lecturas**). Los puntos de medida corresponden a coronas circulares de igual área dentro de la sección recta.

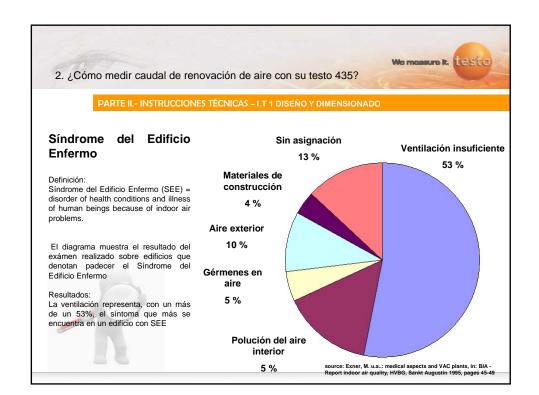
0,028 D 0,002 D 0,146 D 0,146 D 0,342 D 0,374 D 0,854 D 0,874 D

Según NTP 668: Medición del caudal en sistemas de extracción localizada



2. ¿Cómo medir caudal de renovación de aire con su testo 435?

#### Medición de la velocidad en conductos circulares y rectangulares


En conductos rectangulares se divide la sección en rectángulos de igual área y se mide la velocidad en el centro de cada uno de ellos. La distancia entre puntos debe ser como máximo de 15 cm.

En el caso de no requerir una elevada exactitud de la velocidad media en conducto, es decir, cuando se trate de una comprobación rutinaria, y teniendo en cuenta que el régimen es turbulento, puede utilizarse la siguiente aproximación a partir de una sola medida en el centro del conducto:



v = 0.85 \* v centro

Según NTP 668: Medición del caudal en sistemas de extracción localizada





2. ¿Cómo medir caudal de renovación de aire con su testo 435?

### EXIGENCIA DE CALIDAD DE AIRE INTERIOR

#### 2. Método directo por Concentración de CO2

Para locales con elevada actividad metabólica, en los que no está permitido fumar (salas de fiestas, locales para el deporte y actividades físicas).

| CATEGORIA | erm* |
|-----------|------|
| IDA 1     | 350  |
| IDA 2     | 500  |
| IDA 3     | 800  |
| IDA 4     | 1200 |

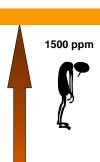
La tabla indica el valor de la concentración de CO2 sobre el nivel de concentración en el aire exterior.



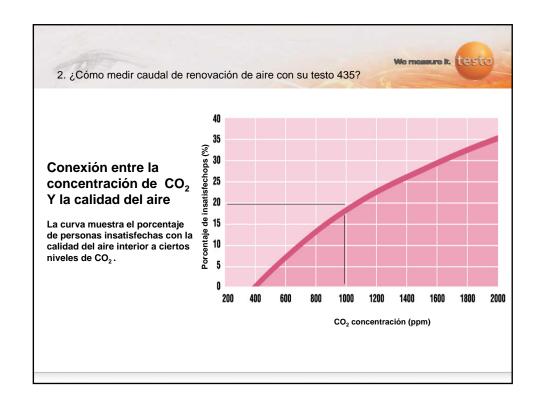
| CATEGORÍA DE<br>CALIDAD DEL<br>ARIE INTERIOR<br>(IDA) | DESCRIPCIÓN           | APLICACIÓN                                                                                                                                                                                                                    |
|-------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IDA 1                                                 | Aire óptima calidad   | Hospitales, clínicas, laboratorios y guarderías.                                                                                                                                                                              |
| IDA 2                                                 | Aire de buena calidad | Oficinas, residencias (locales comunes de hoteles y similares, residencias de ancianos y de estudiantes), salas de lectura, museos, salas de tribunales, aulas de enseñanza y asimilables y piscinas.                         |
| IDA 3                                                 | Aire de calidad media | Edificios comerciales, cines, teatros, salones de actos, habitaciones de hoteles, y similares, restaurantes, cafeterías, bares, salas de fiestas, gimnasios, locales para el deporte (salvo piscinas) y salas de ordenadores. |
| IDA 4                                                 | Aire de calidad baja  |                                                                                                                                                                                                                               |

2. ¿Cómo medir caudal de renovación de aire con su testo 435?

### RITE PARTE II.- INSTRUCCIONES TÉCNICAS – I.T 1 DISEÑO Y DIMENSIONADO


¿Quejas relacionadas con la Calidad del aire interior?




Cuando en una habitación cerrada hay mucha gente no es suficiente el suministro de aire

- aumenta la concentración de CO<sub>2</sub> disminuye la calidad del aire interior disminuye la capacidad de ⇒

- concentración aumentan las quejas









## **MUCHAS GRACIAS POR SU ATENCIÓN**





mjunca@testo.es 93 753 95 20